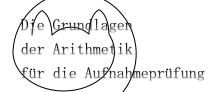


最難関問題

累乗数と素数の剰余

 $\langle \Box, \Delta \rangle$ で、 \Box を Δ 個かけあわせた数を表します。 例えば、 $2 \times 2 \times 2 \times 2 = 1.6$ なので、 $\langle 2, 4 \rangle = 1.6$ です。 次の問いに答えなさい。

- (1) <2, 6>, <2, 33>を11で割ったときの余りを答えなさい。
- (2) < 2, \triangle > + < 9, \triangle >が11の倍数となるような \triangle にあてはまる100以下の整数は何個ありますか。
- (3) <20,6>,<20,33>を11で割ったときの余りを答えなさい。
- (4) $\langle \square$, $7 > + \langle \bigcirc$, 7 >が 1 1 の倍数となるような $(\square$, \bigcirc) にあてはまる 1 \bigcirc \bigcirc 以下の整数の組は何組ありますか。ただし、 $\square < \bigcirc$ とします。
- (5) $\langle \Box, \triangle \rangle + \langle \bigcirc, \triangle \rangle$ が 1 1 の倍数となるような ($\Box, \bigcirc, \triangle$) にあてはまる 1 O O 以下の整数の組は何組ありますか。ただし、 $\Box \langle \bigcirc \rangle$ とします。



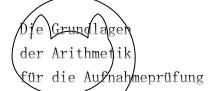
最難関問題

累乗数と素数の剰余 (1)9,8 (2)50個 (3)9,3 (4)450組 (5)40860組

- (1) 2を順にかけ合わせてできる数2, 4, 8, 16, …を11で割った余りは,
 - 2,
 - $2 \times 2 = 4$,
 - $4 \times 2 = 8$.
 - 8×2=16は11以上の数なので11で割った余りを求めて、16÷11=1余り5より5、
 - $5 \times 2 = 10$,
 - $10 \times 2 = 20$, $20 \div 11 = 1 余 9 9 よ 9 9$,
 - $9 \times 2 = 18$, $18 \div 11 = 1余り7より7$,
 - $7 \times 2 = 14$, $14 \div 11 = 1余り3より3$,
 - $3 \times 2 = 6$,
 - $6 \times 2 = 12$, $12 \div 11 = 1 余 9 1 よ 9 1$,
 - 1×2=2,となるので、2,4,8,5,10,9,7,3,6,1,のくり返しになります。
 - よって、く2、6>を11で割った余りは9、
 - <2,33>を11で割った余りは,33÷10=3余り3より周期内の3番目で8です。
- (2) (1) と同様にしてく9、 \triangle >を11で割った余りの周期を求めると、 $\boxed{9,4,3,5,1}$ 、のくり返しになります。く2、 \triangle >を11で割った余りと並べると、10個の数の周期になって、かげをつけた1、3、5、7、9番目の和が11となるので、く2、 \triangle >+く9、 \triangle >が11の倍数になります。

< 2, △>	2	4	8	5	1 0	9	7	3	6	1
< 9, △>	9	4	3	5	1	9	4	3	5	1

よって、△にあてはまる100以下の整数は100以下の奇数なので、100÷50(個)です。



最難関問題

(3) < 20, $\triangle >$ を 1 1 で割った余りの周期を求めると、 $\boxed{9,4,3,5,1}$, のくり返しになります。 これは、< 9, $\triangle >$ を 1 1 で割った余りの周期と完全に一致します。 それは次の理由によります。 ある数□に 9 をかけた数は□×9 で、

ある数 \square に20をかけた数は \square ×20= \square ×(11+9)= \square ×11+ \square ×9です。 \square ×11は11の倍数なので、 \square ×9と \square ×20を11で割った余りは等しくなります。

よって、く20、6>を11で割った余りは9、く20、33>を11で割った余りは3です。

(4) 以上より, <□, △>を11で割った余りは,以下の表を右および下に繰り返していったものになります。

Δ	1	2	3	4	5	6	7	8	9	10
< 1 , △>	1	1	1	1	1	1	1	1	1	1
< 2, △>	2	4	8	5	1 0	9	7	3	6	1
<3, △>	3	9	5	4	1	3	9	5	4	1
< 4 , △>	4	5	9	3	1	4	5	9	3	1
<5, △>	5	3	4	9	1	5	3	4	9	1
<6,△>	6	3	7	9	1 0	5	8	4	2	1
< 7, △>	7	5	2	3	1 0	4	6	9	8	1
<8, △>	8	9	6	4	1 0	3	2	5	7	1
< 9, △>	9	4	3	5	1	9	4	3	5	1
<10, △>	1 0	1	1 0	1	1 0	1	1 0	1	1 0	1
<11, △>	0	0	0	0	0	0	0	0	0	0

 $\langle \Box, 7 \rangle + \langle \bigcirc, 7 \rangle$ が11の倍数となるのは、 (\Box, \bigcirc) が(2、9)、(3、8)、(4、7)や、(2、20)、(2、31)、(13、20)のように \Box ÷11と \bigcirc ÷11の余りを足すと11になる場合と、(11、22)のように11の倍数どうしの場合です。

Die Grundlagen der Arithmetik für die Aufnahmeprüfung

最難関問題

1から100までの間に,

11で割って1余る数は1,12,…,100の10個,

11で割った余りが2~10の数と、11で割り切れる数はそれぞれ9個、あります。

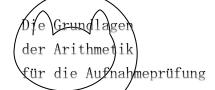
□÷11と○÷11の余りを足すと11になる場合

 (\Box, \bigcirc) が11で割って1余る数と10余る数の組みあわせの場合は、10×9=90(組)あり、それ以外の場合、つまり余りが2と9、3と8、4と7、5と6の場合は、9×9=81(組)あるので、90+81×4=414(組)です。

□と○が11の倍数の場合

100以下の11の倍数は9個あるので、 $\frac{9\times8}{2\times1}$ =36(組)です。

以上より, 414+36=450(組)です。



最難関問題

(5)(4)の表より、

- ・□÷11と○÷11の余りを足すと11になり、 \triangle が一の位が5ではない奇数の場合
- \cdot □÷11と○÷11の余りを足すと11になり、 \triangle が一の位が5の奇数の場合
- ・□と△が11の倍数の場合
- の3つの場合に分けて考えます。

□:11と○:11の余りを足すと11になり,△が一の位が5ではない奇数の場合

 \triangle =7の場合と同様に414組ずつです。 \triangle にあてはまる数は、

1,3,7,9,11,13,…,97,99の40個あるので,

414×40=16560(組)です。

□÷11と○÷11の余りを足すと11になり、△が一の位が5の奇数の場合

□と○が11の倍数の場合

□と ○の組みあわせは3 6組で、△は1 0 0以下のどの整数でもよいので、3 6 × 1 0 0 = 3 6 0 0 (組)です。

以上より、16560+20700+3600=40860(組)です。