

最難関問題

らせんと回転・正三角形2

図1のように充分に広い方眼に〇から順に番号が振ってあります。方眼のマス目と辺の長さが等しい図2の正三角形ABCを向きを変えることなく〇のマス目に図3のように置き,太線に沿ってすべることなく転がしていきます。正三角形ABCの1回転とします。

図 1

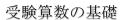
20	21	22	:	
19	6	7	8	9
18	5	0	1	10
17	4	3	2	11
16	15	14	13	12

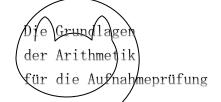
図 2

図 3

20	21	22		
19	6	^	▲ 8	9
18		$\sqrt{0}$	7	10
17	1	3/	\int_{2}	11
16	15	14	13	12

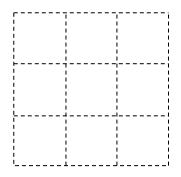
(1) 下図に正三角形ABCが1回転および3回転したときの様子を、例にならってかきこみなさい。

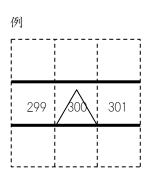

20	21	22		
19	6	7	8	9
18	5	0	1	10
17	4	3	2	11
16	15	14	13	12


1	191					
	20	21	22			
	19	6	7	/8\	9	
	18	5	0	1	10	
	17	4	3/	<u></u>	11	

16 | 15 | 14 | 13 | 12

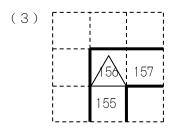
(2) 17のマス目に進むまでに、正三角形ABCは何回転していますか。例えば3回転はしているが4回転はしていないなら「3回転」というように、整数で答えなさい。


(2枚目に続きます)



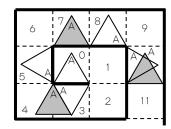
最難関問題

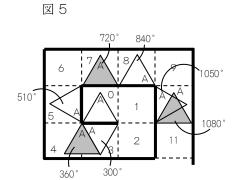
(3)正三角形ABCがちょうど50回転したときの様子を,例にならってマス目とともにかきこみなさい。



最難関問題

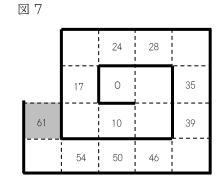
らせんと回転・正三角形2


(2)5回転


156 157 155 等

(1) 頂点Aの位置に注目をすると、1回目、2回目、3回目は図4の影をつけた三角形です。

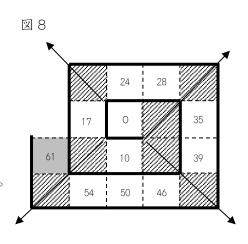
図 4



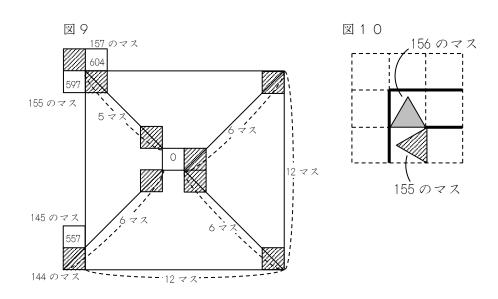
(2)(1)の図4に,正三角形ABCが回転した角度を書き込むと図5のようになります。360度ごとに1回転しているので,正三角形ABCの回転した角度の和を求めていきます。図6のように正三角形ABCは,最初だけ300度回転して,以降は角を曲がる際は210°,直線上を進むときは120度回転します。計算を楽にするために最大公約数の30で割ると,最初は10,角を曲がるときは7,直線上では4の角度を進み,12の角度ごとに1回転する,となります。このようにしてマス目に回転の角度を書き込んだものが図7です。17のマス目には影をつけてあります。

120°

図 6


61÷12=5余り1より,5回転です。

受験算数の基礎



最難関問題

(3)(2)の図7の方法を利用します。50回転ということは、正 三角形ABCが12×50=600の角度を回転すればよいと いうことです。ここで、マス目における角度の増え方を考えます。 直線上では、正三角形の回転角度は1マスにつき4ずつ増えてい きます。それに対して最初は3マスで10増え、角を曲がる際に は2マスで7増えています。これは、図8において斜線で示した 角のマスごとに回転角度が1減っているということです。回転角 度の10は4×3-2、7は4×2-1と考えることができます。 よって、影をつけた17のマスの回転角度61は、4×17-7 =61ということになります。

 $600 \div 4 = 150$ より、150 のマスの周辺を考えます。150 の手前の平方数は $12 \times 12 = 144$ です。144のマスは図9のように角の位置にあります。144 の次の145 のマスまでに、角の位置にあるマスは $6 \times 3 + 5 = 23$ (個)ありますから、145 のマスの回転角度は $4 \times 145 - 23 = 557$ です。また、155 のマスの回転角度は $557 + 4 \times 10 = 597$ 、157 のマスは597 + 7 = 604 ですから、図10 において、斜線で示した155 のマスの位置から、600 - 597 = 3、 $30 \times 3 = 90$ (度)だけ正三角形 ABC は回転すればよいので、156 のマスの影をつけた位置となります。

